from the Robert A. Welch Foundation. The Syntex P2 ${ }_{1}$ diffractometer was purchased with funds provided by the Na tional Science Foundation.
Supplementary Material Available: Listing of observed and calculated structure factors (8 pages). Ordering information is given on any current masthead page.

References and Notes

(1) University of Houston.

(2) University of Texas at Austin.
(3) Southwestern University.
(4) A. J. Barkovich and K. P. C. Vollhardt, J. Am. Chem. Soc.. 98, 2667 (1976).
(5) G. Camaggi. J. Chem. Soc. C, 2382 (1971).
(6) R. L. Soulen. S. K. Choi, and J. D. Park. J. Fluorine Chem.. 3, 141 (1973/74).
(7) G. Germain, P. Main, and M. M. Woolfson, Acta Crystallogr., Sec. A, 27, 368 (1971).
(8) D. T. Cromer and J. B. Mann, Acta Crystallogr., Sect. A, 24, 321 (1968).
(9) W. H. Mills and I. G. Nixon, J. Chem. Soc.. 2510 (1930).
(10) (a) R. A. Finnegan, J. Org. Chem., 30, 1333 (1965); (b) A. Streitweiser, Jr., G. R. Ziegler, P. C. Mowry, A. Lewls, and R. G. Lawler. J. Am. Chem. Soc.. 90, 1357 (1968).
(11) We have recently examined in detail the structure of dicyclopentenobenzocyclobutene. Although this molecule shows good evidence for rehybridization of its aromatic carbons, we again observe no bond alternation in the benzene ring: J. D. Korp. R. P. Thummel, and I. Bernal, Tetrahedron, in press.
(12) W. A. Sheppard and C. M. Sharts, "Organic Fluorine Chemistry", W. A. Benjamin, New York, N.Y., 1969.
(13) C. J. Marsden, J. Mol. Struct.. 21, 168 (1974).
(14) F. W. B. Einstein and A. C. MacGregor, J. Chem. Soc.. Dalton Trans.. 783 (1974).
(15) H. P. Lemaire and R. L. Livingston, J. Am. Chem. Soc., 18, 569 (1950).

Crystal and Molecular Structure of 2,3-Dihydro$\alpha, \beta, \gamma, \delta$-tetraphenylporphyrinatopyridinezinc(II)Benzene Solvate ${ }^{1}$

L. D. Spaulding,*2a L. C. Andrews, ${ }^{2 \mathrm{~b}}$ and Graheme J. B. Williams ${ }^{\text {2b }}$
Contribution from the Departments of Applied Science and Chemistry, Brookhaven National Laboratory, Upton, New York 11973. Received April 30, 1977

Abstract

The structure of 2,3 -dihydro- $\alpha, \beta, \gamma, \delta$-tetraphenylporphyrinatopyridinezinc(II)-benzene solvate, $\mathrm{ZnTPC}(\mathrm{Py}) \cdot \mathrm{C}_{6} \mathrm{H}_{6}$, has been determined from three-dimensional x-ray diffraction. The compound crystallizes with one molecule of benzene and one $\mathrm{ZnTPC}($ Py $)$ per asymmetric unit in the triclinic space group $P \overline{1}$ with $a=11.414$ (2) $\AA, b=13.334$ (2) $\AA, c=14.809$ (1) $\AA, \alpha=99.18(1)^{\circ}, \beta=94.14(1)^{\circ}$, and $\gamma=105.08(1)^{\circ}$. The structure has been refined by block-diagona! least-squares to R $=0.046$ based on 8792 measured intensities with a $13: 1$ parameter-to-variable ratio. Agreement of chemically similar bond distances and angles is excellent. The reduced pyrrole ring is clearly distinct with a $\mathrm{C}_{\beta}-\mathrm{C}_{\beta}$ distance of 1.478 (3) \AA and $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ distance of 1.495 (2) \AA. Comparison of $\mathrm{ZnTPC}(\mathrm{Py})$ with analogous porphyrins shows the effect of reduction on the porphyrin macrocycle and on the zinc coordination. Differences in the orientations of the reduced pyrrole ring hydrogen atoms in chlorophylls and $\mathrm{ZnTPC}(\mathrm{Py})$, previously predicted by ESR experiments, are confirmed.

Metallotetraphenylporphyrins, MTPP, Figure 1a, have been widely studied by x-ray diffraction as models of naturally occurring porphyrins. ${ }^{3}$ The dihydrotetraphenylporphyrins (tetraphenylchlorins), Figure 1b, have been used to model chlorophyll; ${ }^{4}$ however, no structure of a metallotetraphenylchlorin has been determined to date. Such a structure would illustrate the effect of reducing the porphyrin conjugated π-electron system, and allow direct comparison with the recently determined structures of ethylchlorophyllides a^{5} and b. ${ }^{6}$ We present here the structural determination of 2,3-dihy-drotetraphenylporphyrinatopyridinezinc(II)-benzene sol-

vate.

Experimental Section

Tetraphenylchlorin $\left(\mathrm{TPCH}_{2}\right)$ was prepared by standard methods ${ }^{7}$ and reacted with zinc acetate in pyridine to form 2,3-dihydro$\alpha, \beta, \gamma, \delta$-tetraphenylporphyrinatopyridinezinc(II), $\mathrm{ZnTPC}(\mathrm{Py}) .{ }^{8}$ The reaction mixture was partitioned between benzene and water, and the organic layer washed with water. The product was crystallized from benzene and dried in vacuum at room temperature. A combination of diffusion and evaporation at room temperature using Fisher Certified hexanes and dichloromethane, distilled from calcium hydride, as solvents yielded crystals suitable for diffraction studies.

A purple prism ($0.3 \times 0.7 \times 0.4 \mathrm{~mm}$) was mounted along its long axis and the crystallographic properties were examined on a precession camera. Good quality diffraction patterns, exhibiting only inversion symmetry, were obtained. After approximate cell dimensions were measured, the crystal was mounted on an Enraf-Nonius CAD4 diffractometer. Some crystallographic details are given in Table I.

During the 2 weeks of data collection, three reflections were mon-
itored periodically. The intensities of these reflections showed no significant trends or fluctuations; therefore no time-dependent correction for experimental instability was made.
Solution and Refinement. The position of the zinc atom was determined from a vector map, and electron-density and difference-elec-tron-density syntheses were used to obtain positions for all other nonhydrogen atoms. This model was refined by block-diagonal least-squares against the 7760 data with $\left|F_{\mathrm{o}}\right|>12 \sigma\left|F_{\mathrm{o}}\right|$. A further difference map indicated positions for all hydrogen atoms except those of the benzene molecule of solvation. Refinement was continued against all the unique intensity data (Is), except $3 \cdot \overline{4} \cdot 4$ which was omitted because of an unusually large weighted discrepancy. All nonhydrogen atoms were permitted anisotropic expression of their thermal motion, but each hydrogen atom was restricted to a single isotropic vibration parameter. Hydrogen atoms of the benzene solvate were placed in their calculated positions and periodically updated. Because of the apparently very high thermal motion of the benzene ring, refinement of the occupancy factors for its atoms was attempted. Values near unity resulted, and so full occupancy was assumed.
Refinement was terminated when the parameter shifts for all nonhydrogen atoms, except those for the benzene solvate, were reduced to less than their nominal standard deviations. The largest positional shift in the final cycle was 1.08σ for two hydrogen atoms, and the largest change in a vibrationa! parameter was 1.9σ for U_{23} of $C(55)$. A final difference synthesis revealed a peak of height ~ 0.6 e / \AA^{3} near the benzene ring as its most prominent feature. The region near the reduced pyrrole ring was carefully examined for evidence of conformational or rotational disorder, but no evidence for these phenomena was found. Final residuals are given in Table I.

The structure and numbering system are shown in Figure 2 and the atomic positions are given in Tables II and III. The bond distances

Table I. Crystallographic Details
$\left.\begin{array}{rlrl}\text { Unit cell: space group, } \begin{array}{rlrl}a & =11.414(2) \AA \AA^{a} & \alpha & =99.18(1)^{\circ} \\ b & =13.334(1) \AA & \beta & =94.14(2)^{\circ}\end{array} & V=2133 \AA^{3} \\ c & =14.809(1) \AA & \gamma & =105.08(1)^{\circ}\end{array} \quad Z=2\right)$

Density
Obsd (aqueous KI), $1.23 \mathrm{~g} / \mathrm{cm}^{3}$
Calcd for $2 \times\left[\left(\mathrm{C}_{5} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{Zn}\right) / \mathrm{cell}\right], 1.25 \mathrm{~g} / \mathrm{cm}^{3}$
Crystal description: triclinic prism, $\{100\},\{010\},\{001,\{011\}$
$d(100, \underline{1} \underline{0})=0.15 \mathrm{~mm}$ $d(001,001)=0.19 \mathrm{~mm}$
$d(010,010)=0.37 \mathrm{~mm}$
$d(011,011)=0.34 \mathrm{~mm}$
$\mathrm{Vol}=0.085 \mathrm{~mm}^{3}$
Data collection
Diffractometer. Enraf-Nonius, CAD4
Radiation, $\mathrm{CuK} \alpha$-graphite monochromated, $\lambda=1.54051 \AA$
Attenuator, nickel foil, $I_{0} / I_{\text {At1 }}=15.55$
Linear absorption coefficient, $12.28 \mathrm{~cm}^{-1}(\mathrm{Cu} \mathrm{K} \alpha)$
Two θ range, $0 \leqslant 2 \theta \leqslant 140^{\circ}$]
No. of reflections. 11563 measured $h \geqslant 0$, 8792 unique
Scattering factors, Cromer and Mann ${ }^{9}$
Anomalous dispersion, Cromer and Liberman ${ }^{10}$
Refinement: block-diagonal least-squares against Is
$R_{F}=0.03(|F|>0)$
$R_{I}=0.06$
$R_{w F}=0.06(|F|>0)$
$R_{\text {wI }}=0.11$

Programs used
Absorption correction and averaging $\mathrm{BN} / \mathrm{LABS} / \mathrm{AVSORT} T^{23}$
Thermal motion analysis TLS6 (Schomaker and Trueblood) ${ }^{23.24}$
Figure 5 (PRJCTN) (McCandlish, Andrews, Bernstein. 1975) ${ }^{23}$
All others XRAY76 (Stewart et al.) ${ }^{25}$
${ }^{a}$ Here and subsequently the standard deviations of the least significant figure are given in parentheses.
and angles are embodied in Tables IV, V, and V1. Throughout this analysis there was no indication that the structure had symmetry lower than that of space group P1. A tabulation of the observed and calculated amplitudes is available. ${ }^{11}$

Results and Discussion

In structures with a high degree of internal redundancy, the agreement between chemically similar bond lengths can be used to indicate the reliability of the analysis, and also to provide an indication of the true standard deviations in these quantities. Table IV indicates that for this analysis the agreement is, in general, very good, although the least-squares estimates of the standard deviations appears to be too low by a factor of ~ 2.5.
The reduced pyrrole, ring 1 , is clearly distinct from the other three as indicated by the bond distance involving the saturated carbon atoms $\mathrm{C}(2)$ and $\mathrm{C}(3)$. The $\mathrm{C}_{\alpha}-\mathrm{C}_{\beta}$ distances of the reduced ring (average $1.495(2) \AA$) are longer than those of the other three pyrroles by an average of $0.052 \AA$. The $\mathrm{C}_{\beta}-\mathrm{C}_{\beta}$ bond of the saturated pyrrole in this structure ($1.478(3) \AA$) is markedly longer than the other three $\mathrm{C}_{\beta}-\mathrm{C}_{\beta}$ bonds (average 1.363 (4) \AA). It is, however, significantly shorter than the comparable linkage observed in the other crystallographic studies of chlorin compounds. In the ethylchlorophyllides a and b, $1.56 \AA^{5.6}$ was found and, for ethylpheophorbide, ${ }^{12}$ the analysis yielded $1.55 \AA$. The difference between these latter values and that found here seemed abnormally large, and perhaps indicative of some unrecognized error. A careful examination of the difference-electron-density map as noted above and an inspection of the apparent thermal motion of the atoms in this region revealed no evidence of experimental or procedural error. Therefore, we conclude that for the case of only hydrogen atoms as exocyclic substituents of the C_{β} atoms, the $\mathrm{C}_{\beta}-\mathrm{C}_{\beta}$ bond has the expectation value we report here. The chlorophyllide and pheophorbide structures alluded to bear

MTPP
$1 A$

MTPC
1_{B}

Figure 1. Structural formulas and atom designation for a metallotetraphenylporphyrin (1a) and a metallotetraphenylchlorin (lb).
alkyl substituents exocyclic to the saturated ring, and the C_{β} atoms of these rings are displaced above and below the ring planes by $0.076 \AA$ on average. $\ln \mathrm{ZnTPC}(\mathrm{Py})$ these deviations average $0.017 \AA$. The $\mathrm{C}_{\beta}-\mathrm{C}_{\beta}$ distance given here falls in the range 1.42 to $1.54 \AA$ found in simple pyrrolidine derivatives. ${ }^{13.14}$
The reduction of a double bond in the porphyrin macrocycle to form a chlorin has very little effect on the geometry of the macrocycle. The average bond lengths within the porphyrin ring for $\alpha, \beta, \gamma, \delta$-tetra-4-pyridylporphyrinatopyridinezinc(11), $\mathrm{ZnTPyP}(\mathrm{Py}),{ }^{15}$ are given in Table IV along with the values for the phenyl rings from $\left.\operatorname{SnTPP}\left(\mathrm{Cl}_{2}\right)\right)^{16}$ These values agree to within one standard deviation as do the corresponding bond angles given in Table V1.

There appears to have been no change in size of the central hole of this molecule upon reduction. From the center, C_{t}, of the macrocycle, determined from the average of $\mathrm{N}(1), \mathrm{N}(2)$, $\mathrm{N}(3)$, and $\mathrm{N}(4)$ coordinates, the average $\mathrm{C}_{1}-\mathrm{C}_{\mathrm{Me}}$ distance is $3.445 \AA$ and the average $C_{1}-C_{\alpha}$ distances is $3.070 \AA$. The corresponding values in $\mathrm{ZnTPyP}(\mathrm{Py})$ are $3.477 \AA$ and 3.061 Å. ${ }^{15}$

The coordination geometry of the $\mathrm{Zn}(11)$ ion is that of a distorted square pyramid, Figure 3. The metal ion forms bonds 2.061 (1), 2.072 (1), and 2.063 (1) \AA in length to the nitrogen atoms of rings 2, 3 , and 4 and is 2.130 (1) \AA from the reduced pyrrole ring. This pattern of metal-macrocycle bond lengths was also observed in the ethylchlorophyllide structures. These observations support the x-ray photoelectron spectroscopy studies ${ }^{17}$ and molecular orbital calculations ${ }^{18}$ on MTPC which indicate that $\mathrm{N}(1)$ is electron deficient relative to the other pyrrole nitrogen atoms and may be expected to bond less strongly to a metal ion. Because of this decreased electron donation from the equatorial ligands in ZnTPC over that in ZnTPP it is expected that the former compound is a stronger

Table II. Atomic Coordinates and Anisotropic Thermal Vibration Coefficients for the Nonhydrogen Atoms

${ }^{a}$ The coordinates have been multiplied by 10^{5} and the vibration coefficients by 10^{4}. The $U_{i j}$ are coefficients in the expression exp $\left[-2 \pi^{2}\right.$. $\left.\left(U_{11} a^{* 2} h^{2}+\ldots 2 U_{1} a^{*} b * h k \ldots\right)\right]$.

Figure 2. The structure of 2,3-dihydro- $\alpha, \beta, \gamma, \delta$-tetraphenylporphyrinatopyridinezinc(11) and atom numbering system. The hydrogen atoms are numbered according to the carbon atom to which they are bonded. The thermal ellipsoids are drawn for 50% probability, except for those of hydrogen atoms which are not to scale. $\mathrm{H}(3 \mathrm{~B})$ is hidden behind $\mathrm{C}(3)$.

Lewis acid than the latter. The experimental binding constants for pyridine to these two compounds ${ }^{19}$ support this thesis.

The $\mathrm{Zn}-\mathrm{N}(\mathrm{Py})$ distances found for $\mathrm{ZnTPyP}(\mathrm{Py})$, ${ }^{15}$ $\mathrm{ZnTPC}(\mathrm{Py})$ (this study), and $\mathrm{ZnOEP}(\mathrm{Py})^{20}$ form the series 2.143 (4), 2.171 (2), and 2.200 (3) \AA. An explanation of these observations is that steric interaction of the pyridine orthohydrogen atoms with the pyrrole rings result in lengthening of the $\mathrm{Zn}-\mathrm{N}_{\mathrm{Py}}$ bond. ${ }^{20}$ The interaction would be largest if the hydrogen atoms were directly over two of the nitrogen atoms, $\phi=0^{\circ}$, and least for ϕ of 45°. The $\mathrm{N}(2)-\mathrm{Zn}-\mathrm{N}(5)-\mathrm{C}(45)$ torsion angle, ϕ, is 18.6° in $\mathrm{ZnTPC}(\mathrm{Py})$ which is smaller than the 23° found in $\mathrm{ZnTPyP}(\mathrm{Py})$ and larger than that of $\mathrm{ZnOEP}(\mathrm{Py}), 4^{\circ}$.

The distances of the nonhydrogen atoms of the chlorin system from their least-squares plane are given in Figure 4. These indicate that the molecule is saucer shaped as well as being slightly ruffled. The indivjdual pyrrole rings are planar to within $0.01 \AA$ and no nonhydrogen atom of the reduced ring deviates from its best plane by more than $0.02 \AA$. The hydrogen atoms of ring 1 are $0.74 \AA$ above and below the best plane of the pyrrole ring. The dihedral angles between the plane of the four pyrrole \mathbf{N} atoms and the planes of the four five-membered rings are all of the same sign and range between 3 and 6°.

There are two distortions exhibited by this molecule for

Figure 3．Coordination geometry of the zinc ion．

Figure 4．Deviations of the atoms of the metallochlorin macrocycle（ $\AA \times$ 10^{2} ）from the least－squares plane of the chlorin system．
which no explanation has been discerned．These are（1）the phenyl rings bonded to meso carbon atoms $C(5), C(15)$ ，and $C(20)$ form dihedral angles of 93 to 94° with the plane of the four nitrogen atoms，while that bonded to $\mathrm{C}(10)$ is 67° ，and （2）the axial zinc－nitrogen vector is tilted by 7° from the

Table III．Atomic Coordinates and Isotropic Thermal Vibration Parameters for the Hydrogen Atoms

ATOM	x	Y	2	B
$H(2 A)$	4446 （ 25 ）	－2181（21）	1950（17）	80 （7）
$H(2 B)$	$5454(28)$	－1744（24）	$1374(19)$	105 （9）
H（3A）	3145 （28）	－2138（24）	723（19）	102（9）
$H(3 B)$	4969（23）	－1983（19）	121（16）	73 （6）
H（ $\mathrm{r}^{\text {）}}$	1647（22）	480 （18）	－976（15）	65 （5）
H（8）	1893（19）	2414（16）	－698（14）	5.5 （5）
H（12）	4601 （19）	55ア（16）	1958（13）	51 （5）
H（13）	6日®2（21）	5594（18）	3415 （15）	65 （6）
H（17）	7519 （23）	2842（19）	4944 （15）	P1（6）
H（18）	7288（19）	922（16）	4498 （14）	55 （5）
H（22）	3393 （19）	－1206（16）	$-1464(13)$	53 （5）
H（23）	2049 （22）	－2638（19）	－2535（16）	71 （6）
H（24）	65（18）	－3．398（15）	－2245（12）	46 （4）
H（25）	－583（24）	－2808（20）	－877（16）	78（7）
H（26）	$669(22)$	－1417（20）	196（16）	73 （6）
H（28）	3931 （20）	4179（17）	－618（15）	60 （5）
H（29）	326.4 （24）	5325 （19）	－1327（16）	P3（6）
H（30）	1733（20）	$6190(17)$	－684（14）	59 （5）
H（31）	1169（24）	5770（20）	825（17）	80（7）
H（32）	2028（20）	4535 （17）	1524（14）	57 （5）
H（34）	5788（24）	4543 （20）	$5398(17)$	83（7）
H（35）	7042（25）	6037（21）	6512（18）	87 （7）
H（35）	9011 （23）	6737（19）	6151 （15）	79 （6）
H（37）	9683（29）	6156（24）	4734（20）	104（8）
H（38）	8429（26）	$4752(21)$	3P04（18）	87 （7）
H（40）	4817 （22）	－1193（18）	4173（16）	68 （6）
H（41）	5556 （24）	－2382（20）	4942 （17）	76（7）
H（42）	7455 （24）	－2854（20）	4545 （17）	76（7）
$\mathrm{H}(4.3)$	8253（25）	－2003（21）	3297 （17）	82（7）
H（44）	$7603(21)$	－858（19）	2660（15）	63（6）
H（45）	$1557(25)$	$1547(21)$	17ア9（18）	日2（7）
$H(46)$	－165（23）	1031 （28）	2494（16）	P4（E）
H（4）	－2ここ（2a）	IG3（23）	3973（19）	99（8）
H（49）	1771（ ${ }^{\text {¢ }}$	160（2こ）	4453（19）	84（3）
H（49）	3475 （22）	645 （18）	3722（15）	65 （5）
H（50）	1039（34）	$5514(29)$	$3304(24)$	145（12）
H（51）	－PE1（41）	$5608(3$,	2390 （29）	$179(15)$
H（52）	－ 78 （41）	6985 （36）	1886（29）	183（15）
$H(53)$	840（41）	8233 （35）	2029（29）	156（14）
H （5）	$2 \mathrm{ES4} 30)$	8445 33）	2723（29）	$160(14)$
H （55）	2873 （43）	6863（38）	3256（31）	191（16）

${ }^{a}$ The coordinates have been multiplied by 10^{4} and the vibration terms by 10 ．
normal to the basal plane of the metal ligands toward the benzene of solvation．This tilt was also observed in $\mathrm{ZnOEP}(\mathrm{Py}){ }^{20}$ Examination of lists of intramolecular contact distances reveals only two approaches $<3 \AA$ ．These are $\mathrm{H}(54)-\mathrm{H}(2 \mathrm{~B})$ of $2.590 \AA$ and $\mathrm{H}(38)-\mathrm{H}(55)$ of $2.640 \AA$ ．The closest carbon－hydrogen contact is $3.3 \AA$ and all intermolec－ ular carbon－carbon distances are $>3.3 \AA$ ．There is no evidence of any $\pi-\pi$ orbital interactions between neighboring molecules． The shortest distance between the planes of symmetry related chlorin systems is $3.92 \AA$ ．

Figure 5．A packing diagram showing the environment of the benzene molecule and the interactions of the $\mathrm{ZnTPC}(\mathrm{Py})$ molecules．All molecules which have one or more atoms within $5 \AA$ from the centroid of the benzene molecule are drawn．

Table IV. Bond Distances between Nonhydrogen Atoms ${ }^{a}$

${ }^{a}$ Figures in parentheses are errors derived from the coordinate errors as obtained from the block-diagonal least-squares refinement. ${ }^{b}$ Unweighted averages for the chemically similar bonds are given along with their standard deviation, σ_{d}, where $\sigma_{\mathrm{d}}=\left[\Sigma\left(d_{i}-\bar{d}\right)^{2}(n-1) n\right]^{1 / 2}$. ${ }^{c}$ The average value of the indicated bonds after correction for rigid body motion. ${ }^{d} \mathrm{From} \mathrm{ZnTPyP}(\mathrm{Py}) .{ }^{15}{ }^{e} \mathrm{~F}$ rom $\mathrm{SnTPPCl}_{2} .{ }^{16}$

Table V. C-H Bond Lengths

$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$	$0.99(5)$	$\mathrm{C}(30)-\mathrm{H}(30)$	$1.02(5)$
$\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~B})$	$0.99(5)$	$\mathrm{C}(31)-\mathrm{H}(31)$	$0.98(4)$
$\mathrm{C}(3)-\mathrm{H}(3 \mathrm{~A})$	$1.07(5)$	$\mathrm{C}(32)-\mathrm{H}(32)$	$1.00(4)$
$\mathrm{C}(4) \mathrm{H}(3 \mathrm{~B})$	$0.93(4)$	$\mathrm{C}(34)-\mathrm{H}(34)$	$1.05(5)$
$\mathrm{C}(7)-\mathrm{H}(7)$	$0.93(4)$	$\mathrm{C}(35)-\mathrm{H}(35)$	$1.16(5)$
$\mathrm{C}(8)-\mathrm{H}(8)$	$0.94(5)$	$\mathrm{C}(36)-\mathrm{H}(36)$	$1.05(3)$
$\mathrm{C}(12)-\mathrm{H}(12)$	$1.00(4)$	$\mathrm{C}(37)-\mathrm{H}(37)$	$0.98(5)$
$\mathrm{C}(13)-\mathrm{H}(13)$	$0.98(6)$	$\mathrm{C}(38)-\mathrm{H}(38)$	$0.96(5)$
$\mathrm{C}(17)-\mathrm{H}(17)$	$0.99(4)$	$\mathrm{C}(41)-\mathrm{H}(41)$	$1.17(5)$
$\mathrm{C}(18)-\mathrm{H}(18)$	$0.97(5)$	$\mathrm{C}(42)-\mathrm{H}(42)$	$1.02(6)$
$\mathrm{C}(22)-\mathrm{H}(22)$	$0.98(4)$	$\mathrm{C}(43)-\mathrm{H}(43)$	$0.98(5)$
$\mathrm{C}(23)-\mathrm{H}(23)$	$0.99(4)$	$\mathrm{C}(44)-\mathrm{H}(44)$	$1.01(5)$
$\mathrm{C}(24)-\mathrm{H}(24)$	$1.05(3)$	$\mathrm{C}(45)-\mathrm{H}(45)$	$1.05(5)$
$\mathrm{C}(25)-\mathrm{H}(25)$	$1.02(4)$	$\mathrm{C}(46(-\mathrm{H}(46)$	$1.02(5)$
$\mathrm{C}(26)-\mathrm{H}(26)$	$1.04(4)$	$\mathrm{C}(47)-(47)$	$1.06(5)$
$\mathrm{C}(28)-\mathrm{H}(28)$	$1.06(5)$	$\mathrm{C}(48)-\mathrm{H}(48)$	$1.01(5)$
$\mathrm{C}(29)-\mathrm{H}(29)$	$1.07(5)$	$\mathrm{C}(49)-\mathrm{H}(49)$	$1.06(5)$

As can be seen from the stereoscopic packing diagram, Figure 5, the benzene molecule fits neatly into a hole formed
by the phenyl rings and the coordinated pyridine. The closest approaches of the benzene molecule to the macrocycle are given above. All remaining atomic contacts are $>3.0 \AA$.

One of the reasons for undertaking this determination was to discern a structural basis for the large difference between the electron paramagnetic resonance hyperfine coupling constant $\left(a_{\mathrm{H}}\right)$ of the aliphatic protons of the reduced ring in the cation radicals of zinctetraphenylchlorin (ZnTPC^{+}.) and chlorophyll a (Chl^{+}.). At $100 \mathrm{~K}, a_{\mathrm{H}}=7.4$ and 4.2 G for ZnTPC^{+}. and Chl^{+}., ${ }^{4.21}$ respectively. This coupling is given by the McConnell equation, ${ }^{22} a_{\mathrm{H}}=$ (constant) $\rho_{\alpha} \cos ^{2} \theta$ where ρ_{α} is the unpaired spin density on the α-carbon atoms of the reduced ring and θ is the dihedral angle between the plane containing the p_{z} orbital lobes of C_{α} and atom C_{β} and the planes containing the atoms $\mathrm{C}_{\alpha}, \mathrm{C}_{\beta}$, and the hydrogen atoms bonded to C_{β}. Because of the planarity of ring 1, the $\mathrm{NC}_{\alpha} \mathrm{C}_{\beta} \mathrm{H}_{\beta}$ torsion angles were used to calculate an average value of $\theta=$ $34(4)^{\circ}$.

Assuming θ is the same in ZnTPC^{+}. and ZnTPC , and using the theoretically calculated ρ_{α} of 0.138 , a value of $a_{\mathrm{H}}=7.9 \mathrm{G}$ was predicted ${ }^{4}$ in reasonable agreement with the experimentally observed 7.4 G . If the spin densities are similar in

Table VI. Selected Bond Angles in Degrees ${ }^{a . b}$

$\mathrm{N}(1)-\mathrm{Zn}-\mathrm{N}(2)$	NZnN (adjacent)	88.3 (1)	
$\mathrm{N}(1)-\mathrm{Zn}-\mathrm{N}(4)$		87.0 (1)	
$\mathrm{N}(2)-\mathrm{Zn}-\mathrm{N}(3)$		88.7 (1)	
$\mathrm{N}(3)-\mathrm{Zn}-\mathrm{N}(4)$		104.0 (1)	
$\mathrm{N}(1)-\mathrm{Zn}-\mathrm{N}(3)$	NZnZ (opposite)	161.0 (1)	
$\mathrm{N}(2)-\mathrm{Zn}-\mathrm{N}(4)$		162.1 (1)	
$\mathrm{N}(1)-\mathrm{Zn}-\mathrm{N}(5)$	$\mathrm{NZnN} \mathrm{P}_{\mathrm{y}}$	94.9 (1)	
$\mathrm{N}(2)-\mathrm{Zn}-\mathrm{N}(5)$		96.7 (1)	
$\mathrm{N}(3)-\mathrm{Zn}-\mathrm{N}(5)$		89.1 (1)	
$\mathrm{N}(4)-\mathrm{Zn}-\mathrm{N}(5)$		101.0 (1)	
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(4)$	Reduced ring	108.7 (1)	
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$		111.2 (1)	
$\mathrm{N}(1)-\mathrm{C}(4)-\mathrm{C}(3)$		111.3 (1)	
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$		104.2 (2)	
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$		104.3 (1)	
$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(9)$	$\mathrm{C}_{\alpha} \mathrm{NC}_{18}$	107.0 (1)	
$\mathrm{C}(11)-\mathrm{N}(3)-\mathrm{C}(14)$		106.5 (1)	106.8 (2)
$\mathrm{C}(16)-\mathrm{N}(4)-\mathrm{C}(19)$		106.8 (1)	$106.61^{\text {c }}$
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(20$	$\mathrm{NC}_{62} \mathrm{CMe}^{\text {me }}$	125.7 (1)	
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(5)$		125.5 (2)	
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(5)$		126.2 (1)	125.8 (3)
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(10)$		125.5 (1)	$125.7{ }^{\circ}$
$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(15)$		125.4 (1)	
$\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(20)$		126.1 (1)	
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$\mathrm{C}_{\alpha} \mathrm{Cme}_{\text {c }} \mathrm{Cr}^{\text {r }}$	126.3 (1)	
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$		125.0 (2)	
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$		125.6 (1)	125.6 (3)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(1)$		125.6 (2)	$125.2^{\text {c }}$
$\mathrm{C}(20)-\mathrm{C}(1)-\mathrm{C}(2)$	$\mathrm{CMe}_{4} \mathrm{Ca}_{2} \mathrm{C}_{3}$	123.0 (1)	
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$		123.9 (1)	
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$		123.1 (1)	
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$		124.2 (1)	124.1 (6)
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$		124.5 (2)	$125.7{ }^{\circ}$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$		124.7 (2)	
$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$		124.7 (1)	
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$		124.7 (1)	
$\mathrm{N}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$\mathrm{NC}_{6} \mathrm{C}_{B}$	109.9 (1)	
$\mathrm{N}(3)-\mathrm{C}(11)-\mathrm{C}(12)$		109.7 (1)	109.6 (3)
$\mathrm{N}(3)-\mathrm{C}(14)-\mathrm{C}(13)$		109.8 (1)	$109.8{ }^{\text {c }}$
$\mathrm{N}(4)-\mathrm{C}(16)-\mathrm{C}(17)$		109.2 (1)	
$\mathrm{N}(4)-\mathrm{C}(19)-\mathrm{C}(18)$		109.8 (1)	
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$\mathrm{C}_{68} \mathrm{C}_{\beta} \mathrm{C}_{\beta}$	107.0 (1)	
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$		106.7 (2)	
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$		106.7 (2)	106.9 (2)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$		107.2 (1)	$106.9{ }^{\text {c }}$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$		107.1 (1)	
$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{C}(17)$		107.0 (2)	
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(21)$	$\mathrm{C}_{68} \mathrm{C}_{3 \mathrm{C}} \mathrm{C}_{68}$	116.9 (1)	
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(21)$		116.8 (1)	
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(27)$		117.4 (1)	
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(27)$		117.6 (1)	
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(33)$		117.2 (1)	117.2 (3)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(33)$		117.1 (1)	117.3
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(39)$		117.5 (1)	
$\mathrm{C}(1)-\mathrm{C}(20)-\mathrm{C}(39)$		116.8 (1)	

${ }^{a}$ Figures in parentheses are errors derived from the coordinate errors as obtained from the block-diagonal least-squares refinement. ${ }^{h}$ Unweighted averages for the chemically similar bonds are given along with their standard deviation, σ_{d}; where $\sigma_{\mathrm{d}}=\left[\Sigma\left(d_{1}-\bar{d}\right)^{2} /(n\right.$ $\left.-1)_{n}\right]^{1 / 2}$. c From $\mathrm{ZnTPyP}(\mathrm{Py}){ }^{15}$
$\mathrm{ZnTPC}^{+} \cdot$ and $\mathrm{Chl}^{+} \cdot$, then θ should be larger in Chl^{+}. than in $\mathrm{ZnTPC}^{+} .{ }^{4}$ From the x-ray structure of ethylchlorophyllide a^{5} a value for $\theta=45(5)^{\circ}$ was calculated confirming the trend suggested by the ESR data.

Acknowledgments. We wish to thank Dr. T. F. Koetzle for his critical suggestions and careful reading of the manuscript. One of us (L.C.A.) would like to thank Professor W. E. Love for his support. This work was carried out at Brookhaven National Laboratory under contract with the U.S. Energy Research and Development Administration and supported by its Division of Physical Research. Additional support was received from the U.S. National Science Foundation (Grant PCM75-18956), and the U.S. National Institutes of Health (Grant 5RO1AM16446-05).

Supplementary Material Available: A listing of structure amplitudes (33 pages). Ordering information is given on any current masthead page.

References and Notes

(1) Aspects of this work were previously presented: L. D. Spaulding, L. C. Andrews, J. Fajer and G. J. B. Williams, the 172 nd National Meeting of the American Chemical Society, San Francisco, Calif., Aug 1976, Abstract INOR 239.
(2) (a) Applied Science; (b) Chemistry
(3) J. L. Hoard in "Porphyrins and Metalloporphyrins'", K. M. Smith, Ed., Elsevier New York, N.Y., 1975, Chapter 8.
(4) J. Fajer, M. S. Davis, D. C. Brune, L. D. Spaulding, D. C. Borg, and A. Forman, Brookhaven Symp. Biol. 28, 74 (1976).
(5) H.-C. Chow, R. Serlin, and C. E. Strouse, J. Am. Chem. Soc. 97, 7230 (1975).
(6) R. Serlin, H.-C. Chow, and C. E. Strouse, J. Am. Chem. Soc., 97, 7237 (1975).
(7) H. W. Whitlock, R. Hanover, M. Y. Oester, and B. K. Bower, J. Am. Chem. Soc.. 91, 7485 (1969).
(8) H.W. Whitlock and M. Y. Oester, J. Am. Chem. Soc. 95, 5738 (1973).
(9) D. T. Cromer and J. B. Mann, Acta Crystallogr. A. 24, 321 (1968).
(10) D. T. Cromer and D. L. Liberman, J. Chem. Phys., 53, 1891 (1970).
(11) Supplementary material available. See note at end of paper.
(12) M. S. Fisher, D. H. Templeton, A. Zalkin, and M. Calvin, J. Am. Chem. Soc.. 94, 3413 (1972)
(13) C. G. Pierpoint, R. C. Dickinson, and B. J. McCormick, Inorg. Chem., 13, 1674 (1974).
(14) Y. Mitsui, M. Tsuboi, and Y. litaka, Acta Crystallogr., Sect. B, 25. 2182 (1969).
(15) D. M. Collins and J. L. Hoard. J. Am. Chem. Soc. 92, 3761 (1970).
(16) D. M. Collins, W. R. Scheidt, and J. L. Hoard. J. Am. Chem. Soc., 94, 6689 (1972).
(17) D. H. Karweik and N. Winograd, Inorg. Chem., 15, 2336 (1976).
(18) M. Gouterman, C. H. Wagniere, and L. C. Snyder, J. Mol. Spectrosc., 11, 108 (1963).
(19) J. E. Falk, 'Porphyrins and Metalloporphyrins', Elsevier, New York, N.Y. 1964, p 41
(20) D. L. Cullen and E. F. Meyer, Acta Crystallogr., Sect. B. 32, 2259 (1976).
(21) J. R. Norris, H. Scheer, M. E. Druyan, and J. J. Katz, Proc. Natl. Acad. Sci. USA 71, 4897 (1974)
(22) H. M. McConnell, J. Chem. Phys., 24, 764 (1956).
(23) Programs are described in "Brookhaven National Laboratory, Chemistry Department, CRYSNET Manual' ', H. M. Berman, F. C. Bernstein, H. J. Bernstein. T. F. Koetzle, and G. J. B. Williams, Eds. (Informal Report, BNL 21714, 1976).
(24) V. Schomaker and K. N. Trueblood, Acta Crystallogr., Sect. B, 24, 63 (1968).
(25) J. M. Stewart, G. J. Kruger, H. L. Ammon, C. Dickinson, and S. R. Hall, Technical Report TR-192, Computer Science Center, University of Maryland, 1976.

